viernes, 1 de noviembre de 2013

Clasificación ESTELAR por Tipo Espectral

Clasificación por Tipo Espectral (ESTELAR)
El tipo espectral estelar, conocido también como Clasificación espectral de Harvard, ya que lo comenzó a esbozar Edward Charles Pickering de la Universidad Harvard en el año 1890, y que perfeccionó Annie Jump Cannon de la misma universidad en 1901, es la clasificación estelar más utilizada en astronomía. Las diferentes clases se enumeran de las más cálidas a frías.




ClaseTemperaturaColor ConvencionalMasaRadioLuminosidadLíneas de absorciónEjemplo
O28 000 - 50 000 KAzul6015140 000Nitrógenocarbonohelio y oxígenoNaos
B9600 - 28 000 KBlanco azulado18720 000Helio, hidrógenoRigel
A7100 - 9600 KBlanco3,12,180HidrógenoSirio A
F5700 - 7100 KBlanco amarillento1,71,36Metaleshierrotitaniocalcioestroncio ymagnesioPolaris A
G4600 - 5700 KAmarillo1,11,11,2Calcio, helio, hidrógeno y metalesEl Sol
K3200 - 4600 KAmarillo anaranjado0,80,90,4Metales y óxido de titanioAlfa Centauri B
M1700 - 3200 KRojo0,30,40,04Metales y óxido de titanioGliese 581
PD:Masa,radio,y Luminosidad comparadas con El Sol
  • Clase O: son estrellas muy calientes y luminosas destacando en brillantes colores azules. Naos (en la constelación de Puppis) brilla con una potencia cercana a un millón de veces superior a la del Sol. Estas estrellas tienen líneas de helio ionizado y neutro muy prominentes y presentan líneas débiles de Balmer de hidrógeno. Emiten la mayor parte de su radiación en el ultravioleta.
  • Clase B: extremadamente luminosas, como Rigel en Orión, una supergigante azul. Los espectros de estas estrellas tienen líneas de helio neutral y líneas moderadas de hidrógeno. Como las estrellas O y B tienen tanta masa consumen su energía mucho más deprisa que otras estrellas más pequeñas liberando cantidades inmensas de energía y viviendo durante un corto período de unos millones de años. En este tiempo no pueden alejarse demasiado de las regiones de formación estelar en las que nacen por lo que suelen presentarse en grupos de varias estrellas en lo que se conoce como asociaciones OB1, formadas en el interior de nubes moleculares gigantes. La asociación OB1 de Orión es el ejemplo más cercano.
  • Clase A: son las estrellas más comunes que observamos a simple vista. Deneb en el Cisne es una estrella de gran brillo mientras que Sirio, la estrella más brillante desde la Tierra es también una estrella de tipo A muy cercana pero no tan grande como Deneb. Las estrellas de clase A tienen pronunciadas líneas de Balmer de hidrógeno y poseen también líneas de metales ionizados.
  • Clase F: siguen siendo estrellas de gran masa y muy brillantes pero pertenecen ya a la secuencia principal. Como ejemplo podemos considerar Fomalhaut en Piscis Australis. Sus espectros se caracterizan por líneas de Balmer de hidrógeno débiles y metales ionizados. Son de color blanco con un ligero componente amarillo.
  • Clase G: son las mejor conocidas ya que nuestro Sol pertenece a esta clase siendo una estrella de tipo G2. Tienen líneas de hidrógeno aún más débiles que las F y cuentan con líneas de metales ionizados y neutros. A este tipo pertenecen también las gigantes y supergigantes amarillas (tipos de estrella poco común), como Wezen.
  • Clase K: estrellas naranja algo más frías que el Sol. Algunas de ellas son gigantes (como Arcturus o Aldebarán A) e incluso supergigantes como Ómicron1 Canis Majoris o Miram, mientras que otras estrellas K como Alpha Centauri B pertenecen a la secuencia principal. Tienen líneas de hidrógeno muy débiles y en ocasiones algunas líneas correspondientes a metales neutros.
  • Clase M: es la más común de todas por el número de estrellas. Todas las enanas rojas pertenecen a esta clase y más del 90% de todas las estrellas son de este tipo como Próxima Centauri. La clase M también corresponde a la mayoría de las gigantes y a algunas supergigantes como Antares o Betelgeuse, así como a las variables Mira. El espectro de una estrella M tiene líneas moléculas y de metales neutros pero normalmente no muestra líneas de hidrógeno. El óxido de titanio puede formar líneas intensas en las estrellas M.
Más recientemente la clasificación ha sido extendida con nuevos tipos espectrales resultando en la secuencia W O B A F G K M L T y R N C S donde W son estrellas de Wolf-Rayet, L y T representan estrellas extremadamente frías y de poca masa del tipo de lasenanas marrones y R, N, C y S que son utilizadas para clasificar estrellas ricas en carbono.
  • W: más de 70.000 K - Estrellas de Wolf-Rayet. Estas estrellas superluminosas son muy distintas a otros tipos estelares por mostrar grandes cantidades de helio. Se considera que son grandes supergigantes en el final de sus vidas con su capa de hidrógeno exterior expulsada por el fuerte viento estelar causado a tan altas temperaturas. Por este motivo dejan expuesto su núcleo rico en helio.
  • L: 1.500 - 2.000 K - Estrellas con masa insuficiente para desarrollar reacciones nucleares. Son enanas marrones, estrellas de poca masa incapaces de producir reacciones termonucleares de hidrógeno y que conservan intacto el litio que es destruido por reacciones termonucleares en estrellas mayores (L proviene de hecho del litio presente en estas estrellas). Estas estrellas son tan frías que emiten en el infrarrojo cercano.
  • T: 1.000 K - Se trata de estrellas T Tauri, muy jóvenes y de baja masa, algunas a temperaturas tan frías como 600 K. Se trata muy probablemente de estrellas de baja masa en proceso de formación y suelen estar rodeadas de discos de acreción.
  • C: estrellas de carbono. Se subdividen en los siguientes tipos: R, N y S. Se trata de gigantes rojas en el final de sus vidas.
  • D: enanas blancas, por ejemplo Sirio B. La mayoría de las estrellas terminan sus vidas perteneciendo a este tipo.
Finalmente, las dos últimas clases son para identificar objetos no estelares. Clase Q: Clasificación espectral de las Novas. Clase P: Clasificación espectral de las Nebulosas Planetarias.

No hay comentarios: