miércoles, 27 de noviembre de 2013

Voyagers = Viajeros

 La historia de las Voyager, mensajeros de la humanidad

¿Qué misión espacial no tripulada es la más importante de todos los tiempos? Hay muchas candidatas, pero tanto por sus resultados científicos como por el impacto que causaron en toda una generación, me quedo con las sondas Voyager, los viajeros cósmicos por antonomasia. Las  Voyager nos descubrieron un Sistema Solar exterior fascinante, complejo y misterioso a partes iguales. Incluso hoy, acostumbrados como estamos a las espectaculares imágenes de sondas como la Cassini o Curiosity, las fotografías de las Voyager siguen siendo mágicas.
El 5 de septiembre de 1977, hace ahora más de 36 años, la Voyager 1 despegó desde Cabo Cañaveral a bordo de un cohete Titán 3E-Centaur. A pesar de su nombre, la Voyager 1 fue lanzada después que su hermana -lanzada el 20 de agosto de ese mismo año-, pero como debía seguir una trayectoria más rápida hasta Júpiter, la NASA consideró que era mejor reservar el numeral '1' para la primera nave que llegase al gigante joviano.



Dos naves gemelas

Aunque en teoría debían haber formado parte de la serie Mariner, las Voyager eran muy distintas a esta mítica familia de naves. Cada Voyager era básicamente una gran antena de alta ganancia de 3,66 metros de diámetro unida a un cuerpo decagonal con unas dimensiones de 1,88 metros de diámetro y 47 centímetros de alto donde se encontraba la mayor parte de los sistemas electrónicos, un tanque de hidrazina y el sistema de propulsión. La masa al lanzamiento era de 826 kg, incluyendo 115 kg correspondientes a los diez instrumentos científicos. Aunque no den esa impresión, lo cierto es que las Voyager eran bastante grandes para los estándares de la época.

Aspecto de las Voyager (NASA).

Diseño y partes de la nave (NASA).

Sobresaliendo del cuerpo principal, varios brazos y antenas desplegables daban a las sondas un aspecto de frágil insecto cósmico. El más importante era el brazo de la plataforma de instrumentos, donde se encontraban las cámaras. La plataforma móvil, de 107 kg, era capaz de orientarse en dos ejes y resultaba fundamental para permitir que las cámaras e instrumentos apuntasen constantemente a las lunas de los planetas gigantes mientras las sondas pasaban a toda velocidad a través de cada sistema planetario. Sin ella, nunca habríamos disfrutado de las espectaculares imágenes de la misión.

La plataforma incorporaba dos cámaras, un espectrómetro ultravioleta (UVS), un espectrómetro infrarrojo (IRIS), un instrumento de plasma y un fotopolarímetro. Las cámaras de las Voyager, conocidas por el anodino nombre de Imaging Science Subsystem (ISS), fueron la carta de presentación de la misión para el gran público y las protagonistas indiscutibles de todos los instrumentos. Eso sí, eran muy diferente de las cámaras digitales actuales, basadas en el uso de CCDs. Se trataban en realidad de dos cámaras de televisión a base de tubos vidicon, una con un objetivo gran angular dotado de una focal de 200 mm (f/8.5), y otra con un teleobjetivo de 1500 mm (f/3). Cada cámara estaba equipada con ocho filtros y la masa total del instrumento era de 38,2 kg. Para los niveles actuales, la calidad de las imágenes sin procesar no era gran cosa: cada fotografía tenía 0,64 megapíxels (más concretamente, 800 líneas con 800 píxeles cada una). Dependiendo de la iluminación, las cámaras podían tardar entre 0,005 y 61 segundos en tomar una imagen.

Plataforma de instrumentos de las Voyager (NASA/JPL).

Por otro lado, el espectrómetro infrarrojo IRIS (Infrared Radiometer Interferometer and Spectrometer) estaba formado en realidad por tres instrumentos en uno. Su función principal era medir la temperatura y composición de los cuerpos celestes. Contaba con un campo de visión de 15' y estaba dotado de un telescopio Cassegrain de 50 cm de diámetro. El espectrómetro ultravioleta UVS (Ultra-Violet Spectrometer) trabajaba en el rango de longitudes de onda de 400-1600 angstroms y tenía una masa de 4,5 kg. El experimento de rayos cósmicos CRS (Cosmic Rays Subsystem) también estaba situado en el brazo de instrumentos, aunque no en la plataforma móvil, y era capaz de detectar partículas con energías de 0,15-500 MeV por nucleón. Al lado de este instrumento se hallaba el detector LECP (Low-Energy Charged Particle Detector) para captar de partículas cargadas de baja energía. El fotopolarímetro (PPS,Photopolarimeter Subsystem) fue el instrumento gafado de la misión. Debía estudiar las partículas y anillos de los planetas gigantes en longitudes de onda de 230-750 nm, pero sin embargo el PPS de la Voyager 1 dejó de funcionar antes del encuentro con Júpiter y el de la Voyager 2 experimentó multitud de problemas que impidieron su correcto funcionamiento, aunque transmitió datos útiles de varios cuerpos celestes durante el transcurso de la misión. Por su parte, el instrumento de plasma PLS (Plasma Investigation System) tenía una masa de 9,9 kg y consistía en dos detectores de partículas cargadas de baja energía.

También sobresalían de las sondas dos antenas de 10 metros que formaban un ángulo de 90º entre sí y que eran parte de los instrumentos de radioastronomía planetaria (PRA) y del estudio de las ondas de plasma (PWS) al mismo tiempo. Por último, cada sonda tenía un mástil desplegable de 13 metros y 2,3 kg en el que se situaban dos magnetómetros para campos magnéticos débiles, uno situado en el extremo del mástil y otro a seis metros de la nave. Otros dos magnetómetros para campos intensos (20 gauss) estaban situados en el cuerpo del vehículo. El instrumento PLS, las antenas PWS y los detectores de partículas, los instrumentos más 'aburridos' durante la fase de estudio de los planetas, se convertirían con el tiempo en los protagonistas de la misión para estudiar los límites de la heliosfera.

Prueba en tierra del despliegue del magnetómetro (NASA).

Otro brazo de 2,3 metros portaba los tres generadores de radioisótopos (RTGs) que proporcionarían energía eléctrica a la sonda en los lejanos confines del Sistema Solar, allá donde el Sol no es más que una estrella ligeramente más brillante que el resto. Cada RTG pesaba 39 kg y estaba situado en un contenedor de berilio de 40,6 x 50,8 cm, y podía generar 157 W de potencia eléctrica al lanzamiento gracias a la desintegración del plutonio-238. En total, los tres RTGs proporcionaban 7 kW de potencia calorífica, que se transformaban en 470 W eléctricos, una cifra que ya se había reducido a 400 W durante el sobrevuelo de Saturno y que en 1997 rondaba los 335 W. Cada año, la potencia eléctrica disponible disminuía unos 7 W por culpa de la desintegración del plutonio y la degradación de los termopares.

RTGs de las Voyager (NASA).

Las sondas fueron diseñadas de tal forma que la potencia máxima consumida, con todos los sistemas y los diez instrumentos funcionando a la vez, fuese de unos 400 W. Los RTGs de las Voyager habían sido construidos a partir de los RTGs de las canceladas sondas TOPS y, por primera vez, el plutonio estaba almacenado en forma de pequeñas esferas sólidas y no como polvo metálico, evitando así la posibilidad de una fuga de material radiactivo en caso de un accidente durante el lanzamiento. Para evitar los nocivos efectos de la radiación proveniente de los RTGs sobre los instrumentos de la plataforma móvil, éstos estaban situados a 6,7 metros de distancia en la dirección opuesta. Además, entre los RTGs y los instrumentos se hallaba todo el cuerpo central de la nave.

Curiosamente, la mayor parte de ilustraciones de las Voyager no reflejan su verdadero color. Aunque la antena de alta ganancia era de un blanco inmaculado, lo cierto es que el cuerpo de la sonda era predominantemente negro azabache para permitir así un mejor control de la temperatura. Efectivamente, el vehículo estaba cubierto por láminas de kaptón, un material que, además de ser oscuro, conduce la electricidad y evita la acumulación de cargas electrostáticas en zonas aisladas de la nave. Bajo el kaptón se encontraban varias capas de mylar y tedlar, este último un material usado para proteger a los satélites de impactos de micrometeoros. Además, cuatro de los diez compartimentos con los equipos electrónicos estaban dotados de pequeñas 'persianas' para regular la temperatura del interior. También se emplearon calefactores de plutonio (RHUs) de 1 W de potencia para elevar la temperatura de los magnetómetros y sensores solares. Los RHUs complementaban a varios calefactores eléctricos convencionales en aquellas partes de la nave más inaccesibles.
A pesar de su bajo coste comparado con el programa Grand Tour, el proyecto Voyager fue uno de los más ambiciosos y arriesgados jamás lanzados por la NASA. Y es que las dificultades técnicas a los que se enfrentaron los encargados de la misión eran enormes.
Para empezar, las dos naves debían llevar a cabo todo tipo de operaciones de forma autónoma. La gran distancia a la que se encuentran los planetas exteriores impedía una comunicación fluida con las sondas. Para lograrlo, cada vehículo llevaba tres ordenadores redundantes dotados de una memoria de 4-8 kB. En condiciones normales, un ordenador -el FDS (Flight Data Subsystem)- sería el encargado de las comunicaciones con la Tierra. Otro gestionaría el flujo de datos de los instrumentos (CCS, Computer Command Subsystem) y un tercero controlaría en todo momento la posición de la nave y de la plataforma de instrumentos (el AACS, Attitude and Articulation Control Subsystem). Un tercio de la memoria de uno de los ordenadores podía ser reprogramada en vuelo, lo que resultaría esencial de cara a la misión extendida de la Voyager 2 en Urano y Neptuno. Las naves también disponían de un grabador de cinta magnética con una capacidad de almacenamiento de 67 MB, suficientes para guardar unas cien fotos a máxima resolución. El diseño de los ordenadores de las Voyager se basaba en el ambicioso sistema STAR (Self Testing and Repair) que debía haber controlado las sondas TOPS.
La sonda en configuración de lanzamiento (NASA).
La estabilidad de la nave era una de las mayores preocupaciones de los ingenieros. A diferencia de las Pioneer, que estaban estabilizadas mediante giro, las Voyager serían naves del tipo 'estabilizadas en tres ejes', es decir, que no podrían usar las ventajas de la conservación del momento angular. Este requisito era necesario para permitir que los instrumentos -especialmente las cámaras- pudiesen apuntar a sus objetivos de forma más o menos continua. El problema es que al mismo tiempo la nave debía mantener la antena principal constantemente apuntada hacia la Tierra, lo que significaba que la capacidad de orientación de la sonda debía tener una precisión de al menos un sexto de grado en todo momento, la anchura del haz de radio emitido por la sonda.
Para ello, las Voyager disponían de un conjunto de 16 impulsores de 0,89 newtons de empuje a base de hidrazina. Doce de estos impulsores servían para controlar la orientación de la nave y cuatro para maniobras de cambio de trayectoria. El tanque de hidrazina, de 71 centímetros de diámetro y fabricado en titanio, estaba situado en el centro del cuerpo decagonal del vehículo y contenía 104 kg de esta sustancia. El sistema de propulsión de las Voyager permitía un cambio de velocidad total, o Delta-V, de 0,19 km/s, muy poco para una misión tan ambiciosa. Sin embargo, el escaso empuje de los motores de las sondas no sería un inconveniente: la gravedad de los planetas gigantes se encargaría de la mayor parte del trabajo de 'propulsión'. La sonda se orientaba en el espacio gracias a un sensor solar y dos sensores estelares, que tenían como referencia a la estrella Canopus (la más brillante del cielo lejos de la eclíptica). El sensor solar sobresalía a través de un hueco en la antena de alta ganancia.
Otro desafío era la radiación. Las sondas Pioneer 10 y 11 habían descubierto en 1974 y 1975 que los niveles de radiación en las cercanías de Júpiter eran mucho más elevados de lo que se esperaba. Como resultado, fue necesario aumentar el 'blindaje' de la nave para evitar que los sistemas de la nave resultasen fritos por las partículas de alta energía. Por último, las comunicaciones constituirían una verdadera odisea. Las estaciones terrestres de la red DSN de la NASA (Goldstone, Madrid y Australia) deberían ser capaces de captar la débil señal de 23 W que emitían las naves a través de las dos antenas de alta y baja ganancia. ¡Captar una señal con la potencia de una bombilla a distancias superiores a los 4500 millones de kilómetros! Difícil, sí, pero no imposible.
Pruebas en tierra de la sonda (NASA).
Cada sonda disponía de cuatro transmisores redundantes capaces de enviar señales en banda-S (2,3 GHz) y en banda-X (8,4 GHz), así como dos receptores en banda-S para captar las órdenes procedentes de la Tierra. Los receptores eran redundantes, lo que de hecho salvó la misión de la Voyager 2 cuando su receptor primario falló en abril de 1978. Las Voyager transmitían datos a una velocidad de 115,2 kbps a la distancia de Júpiter, pero sólo a 14,4 kbps desde la órbita de Neptuno. El canal en banda S se usó hasta el encuentro con Neptuno en 1989 para mandar ordenes a las naves a 40 bps, pero ahora únicamente se usa la banda X.
Pero sin duda, el elemento más famoso de las Voyager serían los mensajes destinados a posibles alienígenas que encontrasen las sondas en el futuro, una iniciativa dirigida por el popular astrónomo Carl Sagan. A diferencia de la simple placa que llevaron las sondas Pioneer 10 y 11, las Voyager incluirían el disco 'Sonidos de la Tierra', también conocidos simplemente como Voyager Golden Record, un disco de cobre de 30 centímetros de diámetro bañado en oro -un elemento muy estable- con imágenes, canciones y sonidos de nuestro planeta. La cubierta del disco contiene las instrucciones para su uso y la descripción de la posición de la Tierra en la Galaxia con respecto a varios púlsares, así como un trozo de uranio-238 de gran pureza. Gracias a este trozo de uranio, los posibles alienígenas que capturen las sondas serán capaces de saber su edad con precisión.
El disco 'Sonidos de la Tierra' y su cubierta con las instrucciones para usarlo y su lugar de instalación (NASA/JPL).
La parte en audio contiene un saludo en 55 idiomas -incluyendo lenguas muertas como el acadio o el hitita-, 35 'sonidos de la Tierra' -latidos, besos, risas o cantos de ballena-, así como 90 minutos de música de todo tipo, desde Mozart hasta Chuck Berry. Las 115 imágenes se grabaron en formato analógico, por lo que el disco incluye las instrucciones para reconstruirlas. El disco se instaló en un lateral de la nave y no en su interior, como pedían algunos para protegerlo mejor de los micrometeoros. Los 'Sonidos de la Tierra' siguen siendo actualmente el mensaje físico más elaborado que la humanidad haya enviado para comunicarse con una posible civilización extraterrestre, aunque las probabilidades de que algún alienígena pueda detectar alguna de las pequeñas Voyager en medio del espacio interestelar es prácticamente nula.

Instalación del disco en la nave (revista LIFE).
Camino a las estrellas

La visita de las Voyager 2 al sistema de Neptuno cerró una fase histórica. La humanidad había concluido su primera exploración del Sistema Solar exterior, y todo en menos de una década. La gravedad de Neptuno desvió la trayectoria de la Voyager 2 hacia el sur de la eclíptica, en el sentido opuesto a su hermana. A partir de entonces, el objetivo de las dos sondas sería determinar dónde finaliza la heliosfera, es decir, encontrar el límite que separa el Sistema Solar del espacio interestelar, límite conocido como heliopausa. El azar quiso que las dos Voyager se dirijan hacia el frente más cercano de la heliopausa. De no haber sido así, las dos naves habrían agotado su fuente de energía mucho antes de alcanzar el límite de la heliosfera.

Estructura de la heliosfera (NASA).

El 14 de febrero de 1990, las cámaras de la Voyager 1 funcionaron por última vez para tomar 64 emotivas fotografía, un 'retrato de familia' de los planetas del Sistema Solar a seis mil millones de kilómetros de distancia, con excepción de Mercurio y Marte, demasiado débiles para ser captados a esa distancia. Este retrato de familia sería el legado de las cámaras de las Voyager después de haber obtenido más de 67000 imágenes. Las fotos, sin valor científico alguno, servirían de inspiración para la famosa obra 'Un punto azul pálido' de Carl Sagan. Para entonces, las dos Voyager estaban tan lejos que la Tierra no era más que un minúsculo y humilde punto azul en la inmensidad del espacio interplanetario. En palabras de Sagan:
Mira ese punto. Eso es aquí. Eso es casa. Eso es nosotros. En él se encuentra todo aquel que amas, todo aquel que conoces, todo aquel del que has oído hablar, cada ser humano que existió, vivió sus vidas. La suma de nuestra alegría y sufrimiento, miles de confiadas religiones, ideologías y doctrinas económicas, cada cazador y recolector, cada héroe y cobarde, cada creador y destructor de la civilización, cada rey y cada campesino, cada joven pareja enamorada, cada madre y padre, cada esperanzado niño, inventor y explorador, cada maestro de moral, cada político corrupto, cada “superestrella”, cada “líder supremo”, cada santo y pecador en la historia de nuestra especie vivió ahí – en una mota de polvo suspendida en un rayo de luz del sol. 

Retrato del Sistema Solar (NASA).

La Tierra como un simple punto azul pálido. ¿La encuentras? (NASA).

Definitivamente, si al ver esta imagen no sientes un escalofrío, es que no eres humano.

A medida que la potencia de los RTGs fue disminuyendo, las Voyager fueron apagando sus instrumentos uno a uno. Un poco como en aquella memorable escena de '2001', cuando Dave Bowman apaga poco a poco al díscolo HAL 9000. Moviéndose a una velocidad de 17,4 km/s -o lo que es lo mismo, 540 millones de kilómetros al año-, el 17 de febrero de 1998 la Voyager 1 adelantó a la Pioneer 10 y se convirtió en el objeto humano más lejano. Y muy probablemente lo será durante muchas décadas. Por su parte, la Voyager 2 se aleja del hogar a 16 km/s, recorriendo 470 millones de kilómetros al año, aunque todavía le queda algún tiempo para adelantar a la Pioneer 10. La sonda New Horizons, también destinada a abandonar el Sistema Solar, jamás adelantará a las Voyager, ya que su velocidad hiperbólica será inferior a los 15 km/s.

La Voyager 1 alcanzó la onda de choque de la heliopausa (bow shock) en 2003-2004 -la fecha exacta se discute aún-, cuando se encontraba a unos 14000 millones de kilómetros del Sol. La Voyager 2 hizo lo propio el 30 de agosto de 2007, unos 1600 millones de kilómetros más cerca del Sol que su compañera. Recientemente, observaciones de los rayos cósmicos captados por la Voyager 1 parecen indicar que al fin la sonda se está acercando a la heliopausa, aunque podría tratarse de una falsa alarma. En cualquier caso, la mayoría de modelos predicen que para 2020 las dos sondas deberán haber alcanzado el límite del Sistema Solar.

Ruta de escape del Sistema Solar de las Voyager y Pioneer 10 y 11 (NASA).

La potencia de los RTGs disminuye año tras año de forma inexorable. En algún momento alrededor de 2025 o 2030, casi medio siglo después de ser lanzadas desde la Tierra, las dos sondas se apagarán para siempre y nunca volveremos a escuchar su señal. Pero la aventura no habrá concluido. Una vez en el espacio interestelar, las Voyager seguirán alejándose del Sol durante toda la eternidad, suponiendo que no choquen con un pequeño asteroide en su camino. Dentro de 38000 años, la Voyager 1 pasará silenciosamente a 1,6 años luz de AC+79 3888, una estrella anónima en la constelación de Camelopardalis. Si alguna noche contemplas el cielo estrellado, acuérdate de mirar hacia la constelación de Ofiuco. Allí está la Voyager 1. Por su parte, la Voyager 2 se acercará a 'solamente' 1,7 años luz de la estrella Ross 248 dentro de 40000 años. Y si esperamos 296 000 años, veremos como pasa a 4,3 años luz de Sirio, la estrella más brillante del cielo.

¿Pero sabes que es lo más fascinante de estas naves? Que dentro de decenas de millones de años, cuando la humanidad haya desaparecido y no quede ningún rastro de nosotros, las Voyager seguirán ahí fuera con su mensaje -nuestro mensaje- al Universo. Un mensaje que se resume en un 'estuvimos aquí. Vivimos y exploramos el cosmos con curiosidad. No nos olvides'.
Viajeras interestelares
El 25 de agosto de 2012 la NASA confirmó que la voyager 1 llegó a la heliopausa convirtiendose en el primer objeto humano en el medio interestelar.

"Así que a partir de ahora recuerda esta fecha: 25 de agosto de 2012. Una fecha que deberá pasar a los anales de la historia como uno de los momentos más importantes de nuestra especie. ¿Dónde estabas cuándo la humanidad alcanzó el espacio interestelar?"
>"Hola y un saludo a todos."

 http://cosmoseluniverso.blogspot.com/2013/10/la-sonda-espacial-voyager-1-ha.html
http://www.jpl.nasa.gov/multimedia/voyager_record/index_voyager.html
http://voyager.jpl.nasa.gov/multimedia/JPLvoyagerModule/JPLvoyagerModule.html
http://danielmarin.blogspot.com.es/2013/09/la-voyager-1-ya-esta-oficialmente-el.html
http://voyager.jpl.nasa.gov/
http://voyager.jpl.nasa.gov/spacecraft/goldenrec.html
http://es.wikipedia.org/wiki/Voyager

2 comentarios:

Anónimo dijo...

Muy buen artículo, muy completo ¿de donde has sacado las imágenes?

Pablo Martin Ferreira dijo...

Hola gracias por tu comentario.Las imagenes son la mayoria de el blog de Daniel Marin (el enlace esta al final de la entrada) quien a su vez las saco de las fuentes citadas en los epigrafes.